Hero Circle Shape
Hero Moon Shape
Hero Right Shape
imtoken安卓版下载2.0|gtex数据库官网

imtoken安卓版下载2.0|gtex数据库官网

  • 作者: imtoken安卓版下载2.0
  • 2024-03-17 02:18:46

GTEx Portal

PortalWe're sorry but gtex doesn't work properly without JavaScript enabled. Please enable it to contin

Genotype-Tissue Expression Project (GTEx)

Genotype-Tissue Expression Project (GTEx)

Skip to main content

Skip to navigation

Skip to search

Skip to slider

Skip to about

Skip to

subscription

Skip to footer

National Human Genome Research Institute

ABOUTGENOMICS

About Genomics

Introduction to Genomics

Educational

Resources

Policy

Issues in Genomics

The Human Genome

Project

RESEARCHFUNDING

RESEARCHFUNDING

Funding

Opportunities

Funded Programs & Projects

Division and Program Directors

Scientific

Program Analysts

Contact

by Research Area

News & Events

RESEARCHAT NHGRI

RESEARCHAT NHGRI

Research

Areas

Research

investigators

Research

Projects

Clinical

Research

Data

Tools & Resources

News &

Events

ABOUTHEALTH

ABOUT HEALTH

Genomics

& Medicine

Family

Health History

For

Patients & Families

For

Health Professionals

Careers & Training

Careers & Training

Jobs

at NHGRI

Training at NHGRI

Funding for Research

Training

Professional

Development Programs

NHGRI

Culture

News &Events

News & Events

News

Events

Social

Media

Broadcast Media

Video

Image

Gallery

Press Resources

AboutNHGRI

About NHGRI

Organization

NHGRI

Director

Mission & Vision

Policies & Guidance

Budget

Institute Advisors

Strategic Vision

Leadership Initiatives

Diversity, Equity, and Inclusion

Partner with NHGRI

Staff

Search

Contact

Us

Breadcrumb

Home

Research Funding

Funded Programs and Projects

Genotype-Tissue Expression Project (GTEx)

Home

Research Funding

Funded Programs and Projects

Genotype-Tissue Expression Project (GTEx)

An NIH Common Fund Project

The aim of the Genotype - Tissue Expression (GTEx) Project is to increase our understanding of how changes in our genes contribute to common human diseases, in order to improve health care for future generations.

GTEx Publishes Final Dataset (V8)

On Sept. 11, 2020, the final set of analyses from the GTEx Consortium were published in Science.  The latest GTEx data release represents the largest atlas of human gene expression and catalog of trait loci to date.

Overview

Launched by the National Institutes of Health (NIH) in September 2010 (See: NIH launches Genotype-Tissue Expression project), GTEx will create a resource that researchers can use to study how inherited changes in genes lead to common diseases. It will establish a database and a tissue bank that can be used by many researchers around the world for future studies.

GTEx researchers are studying genes in different tissues obtained from many different people. Thus every donor's generous gift of tissues and medical information to the GTEx project makes possible research that will help improve our understanding of diseases, giving hope that we will find better ways to prevent, diagnose, treat and eventually cure these diseases in the future.

In addition, the GTEx project includes a study to explore the effectiveness of the GTEx donor consent process. We hope to better understand how participating in the study might affect the attitudes, beliefs and feelings of donors and the families of deceased donors using interviews and surveys of participants and their families. This study will help ensure that the consent process and other aspects of the project effectively address the concerns and expectations of participants in the study.

GTEx is a pioneering project that uses state-of-the-art protocols for obtaining and storing a large range of organs and tissues and for testing them in the lab. These tissues and organs are collected and stored through the National Cancer Institute's cancer Human Biobank initiative on behalf of GTEx. Until now, no project has analyzed genetic variation and expression in as many tissues in such a large population as planned for GTEx.

GTEx is funded through the NIH Common Fund, which supports innovative projects involving multiple NIH Institutes. GTEx is managed by the NIH Office of the Director, in partnership with the National Human Genome Research Institute, National Institute of Mental Health, National Cancer Institute, and numerous other NIH institutes. Additional information about the NIH Common Fund can be found at http://commonfund.nih.gov.

To learn more about the science behind the GTEx project, we invite you to visit: http://commonfund.nih.gov/GTEx.

Overview

Launched by the National Institutes of Health (NIH) in September 2010 (See: NIH launches Genotype-Tissue Expression project), GTEx will create a resource that researchers can use to study how inherited changes in genes lead to common diseases. It will establish a database and a tissue bank that can be used by many researchers around the world for future studies.

GTEx researchers are studying genes in different tissues obtained from many different people. Thus every donor's generous gift of tissues and medical information to the GTEx project makes possible research that will help improve our understanding of diseases, giving hope that we will find better ways to prevent, diagnose, treat and eventually cure these diseases in the future.

In addition, the GTEx project includes a study to explore the effectiveness of the GTEx donor consent process. We hope to better understand how participating in the study might affect the attitudes, beliefs and feelings of donors and the families of deceased donors using interviews and surveys of participants and their families. This study will help ensure that the consent process and other aspects of the project effectively address the concerns and expectations of participants in the study.

GTEx is a pioneering project that uses state-of-the-art protocols for obtaining and storing a large range of organs and tissues and for testing them in the lab. These tissues and organs are collected and stored through the National Cancer Institute's cancer Human Biobank initiative on behalf of GTEx. Until now, no project has analyzed genetic variation and expression in as many tissues in such a large population as planned for GTEx.

GTEx is funded through the NIH Common Fund, which supports innovative projects involving multiple NIH Institutes. GTEx is managed by the NIH Office of the Director, in partnership with the National Human Genome Research Institute, National Institute of Mental Health, National Cancer Institute, and numerous other NIH institutes. Additional information about the NIH Common Fund can be found at http://commonfund.nih.gov.

To learn more about the science behind the GTEx project, we invite you to visit: http://commonfund.nih.gov/GTEx.

Donors

The generosity of donors and donor families make this project possible. The goal of GTEX is to increase our understanding of how changes in genes contribute to common human diseases. This knowledge will improve health care for future generations.

GTEx will create information that will be useful to many researchers, studying many different diseases. The gift of your tissue or your loved one's tissue may lead to research which could help improve treatment for many people in the future.

There are two types of donor groups that participate in the GTEx project: 1) organ and tissue donors, and 2) surgical donors.

Organ and tissue donors include individuals who have agreed to donate organs (like kidneys, heart, and liver) and/or tissues (like bone and cornea) for use as medical transplants after they died. Family members may also make the decision to give consent for organ or tissue donation after their loved one has passed on. These donors or their family members have the opportunity to indicate whether any organs or tissues ineligible for transplants may be donated to benefit research studies like GTEx. Donating to GTEx would not interfere with the use of the organ or tissues for transplantation, which takes priority. Compared to surgical donors, many more types of tissues can be obtained for research studies from organ and tissue donors. People who may not qualify to donate organs or tissue for transplants may still qualify to donate tissues to GTEx for research.

 

Surgical tissue donors include people who undergo certain kinds of surgery. If a surgery patient agrees ahead of time, tiny amounts of tissue removed during surgery, such as fat, skin, or muscle, can be donated for use in the GTEx project. Only tissue which needs to be removed for medical reasons can be donated to the GTEx project. Donating to the GTEx project will not cause any additional tissue to be removed.

 

GTEx Findings

It has been said that someone has "good genes" when they are particularly healthy, but what does that mean? How does understanding of genetics translate into better health? NIH designed the Genotype Tissue Expression (GTEx) project to start to answer this question. The project is looking at the differences in people's genes.

Genes are made up of DNA and DNA is made up of different pieces too. One of GTEx's goals is to identify the pieces of DNA that control how genes behave. These pieces of DNA are called expression quantitative trait loci or eQTLs. These eQTLs control the behavior of genes like a thermostat regulates the temperature of a home. GTEx studies found that the number of eQTLs varies from person to person and from tissue to tissue. Researchers also discovered eQTLs act in different ways. Some eQTLs may affect a set of genes in one tissue, while other eQTLs affect genes in many tissues.

The GTEx consortium has also built an eQTL web-browser (http://www.gtexportal.org/home/) to help visualize and discover new relationships between genes and the DNA that affects them. This website provides a resource for the many researchers who are exploring the human genome. Understanding how the eQTLs change gene behavior in different tissues can help us understand how diseases develop in people. This knowledge, in turn, may help us develop new therapies and treatments, improving our health overall.

Donors

The generosity of donors and donor families make this project possible. The goal of GTEX is to increase our understanding of how changes in genes contribute to common human diseases. This knowledge will improve health care for future generations.

GTEx will create information that will be useful to many researchers, studying many different diseases. The gift of your tissue or your loved one's tissue may lead to research which could help improve treatment for many people in the future.

There are two types of donor groups that participate in the GTEx project: 1) organ and tissue donors, and 2) surgical donors.

Organ and tissue donors include individuals who have agreed to donate organs (like kidneys, heart, and liver) and/or tissues (like bone and cornea) for use as medical transplants after they died. Family members may also make the decision to give consent for organ or tissue donation after their loved one has passed on. These donors or their family members have the opportunity to indicate whether any organs or tissues ineligible for transplants may be donated to benefit research studies like GTEx. Donating to GTEx would not interfere with the use of the organ or tissues for transplantation, which takes priority. Compared to surgical donors, many more types of tissues can be obtained for research studies from organ and tissue donors. People who may not qualify to donate organs or tissue for transplants may still qualify to donate tissues to GTEx for research.

 

Surgical tissue donors include people who undergo certain kinds of surgery. If a surgery patient agrees ahead of time, tiny amounts of tissue removed during surgery, such as fat, skin, or muscle, can be donated for use in the GTEx project. Only tissue which needs to be removed for medical reasons can be donated to the GTEx project. Donating to the GTEx project will not cause any additional tissue to be removed.

 

GTEx Findings

It has been said that someone has "good genes" when they are particularly healthy, but what does that mean? How does understanding of genetics translate into better health? NIH designed the Genotype Tissue Expression (GTEx) project to start to answer this question. The project is looking at the differences in people's genes.

Genes are made up of DNA and DNA is made up of different pieces too. One of GTEx's goals is to identify the pieces of DNA that control how genes behave. These pieces of DNA are called expression quantitative trait loci or eQTLs. These eQTLs control the behavior of genes like a thermostat regulates the temperature of a home. GTEx studies found that the number of eQTLs varies from person to person and from tissue to tissue. Researchers also discovered eQTLs act in different ways. Some eQTLs may affect a set of genes in one tissue, while other eQTLs affect genes in many tissues.

The GTEx consortium has also built an eQTL web-browser (http://www.gtexportal.org/home/) to help visualize and discover new relationships between genes and the DNA that affects them. This website provides a resource for the many researchers who are exploring the human genome. Understanding how the eQTLs change gene behavior in different tissues can help us understand how diseases develop in people. This knowledge, in turn, may help us develop new therapies and treatments, improving our health overall.

Progress

As of December 2015, GTEx finished enrollment of the additional donors, for a total of 961 donors. Analysis of the samples and data will continue for another 18 months. Over 30,000 samples have been collected.

In fall of 2015, information on gene expression for over 450 donors was released to the scientific community through the database of Genotype and Phenotype (dbGaP). Additionally, the new version of the GTEx Genome Browser has been launched and features new visualization tools.

In 2014, The National Institutes of Health awarded eight new grants to researchers to use tissues donated to GTEx to explore how human genes are expressed and regulated in different tissues.

In 2020, the GTEx Consortium published its final set of studies analyzing genotype data from approximately 948 post-mortem donors and approximately 17,382 RNA-seq samples across 54 tissue sites and 2 cell lines, with adequate power to detect Expression Quantitative Trait Loci in 48 tissues.

Progress

As of December 2015, GTEx finished enrollment of the additional donors, for a total of 961 donors. Analysis of the samples and data will continue for another 18 months. Over 30,000 samples have been collected.

In fall of 2015, information on gene expression for over 450 donors was released to the scientific community through the database of Genotype and Phenotype (dbGaP). Additionally, the new version of the GTEx Genome Browser has been launched and features new visualization tools.

In 2014, The National Institutes of Health awarded eight new grants to researchers to use tissues donated to GTEx to explore how human genes are expressed and regulated in different tissues.

In 2020, the GTEx Consortium published its final set of studies analyzing genotype data from approximately 948 post-mortem donors and approximately 17,382 RNA-seq samples across 54 tissue sites and 2 cell lines, with adequate power to detect Expression Quantitative Trait Loci in 48 tissues.

Social Media

Engage

GTEx Portal on Twitter

Program Staff

Simona Volpi, Ph.D.

Program Director

Division of Genomic Medicine

Related Projects

Research Funding

Developmental Genotype-Tissue Expression (dGTEx)

Current Slide

Research Funding

Developmental Genotype-Tissue Expression (dGTEx)

Current Slide

Research Funding

Developmental Genotype-Tissue Expression (dGTEx)

Last updated: September 24, 2020

Get Updates

Enter your email address to receive updates about the latest advances in genomics research.

Subscribe

Social Media Stream

Footer Links

Contact

Accessibility

Site Map

Staff Search

Plug-Ins Used by HHS

FOIA

Privacy

Copyright

HHS Vulnerability Disclosure

GTEx - Database Commons

GTEx - Database Commons

Database Commons a catalog of worldwide biological

databases

Search

e.g., human; SARS-CoV-2; lncRNA;

single cell;

spatial omics;

immune;

Oryza sativa;

European Bioinformatics Institute;China

Home

Search

Browse

Statistics

Curators

Help

Disclaimer

Submit

Sign in

Home

Database

Database Profile

GTEx

General information

URL:

https://www.gtexportal.org

Full name:

Genotype-Tissue Expression

Description:

GTEx established a data resource and tissue bank to study the relationship between genetic variation and gene expression in multiple human tissues. This release includes genotype data from approximately 714 donors and approximately 11688 RNA-seq samples across 53 tissue sites and 2 cell lines, with adequate power to detect Expression Quantitative Trait Loci in 48 tissues.

Year founded:

2013

Last update:

2019-7-24

Version:

v8

Accessibility:

Manual:

Accessible

Real time :

Checking...

Country/Region:

United States

Classification & Tag

Data type:

DNA

RNA

Data object:

Animal

Database category:

Expression

Genotype phenotype and variation

Major species:

Homo sapiens

Keywords:

normal tissue

tissue site

eQTL

RNA-seq

Contact information

University/Institution:

Broad Institute

Address:

9000 Rockville Pike, Bethesda, Maryland 20892

City:

Bethesda

Province/State:

Maryland

Country/Region:

United States

Contact name (PI/Team):

GTEx consortium

Contact email (PI/Helpdesk):

volpis@mail.nih.gov

Publications

29334591

GTEx project maps wide range of normal human genetic variation: A unique catalog and follow-up effort associate variation with gene expression across dozens of body tissues. [PMID: 29334591]

Abstract

Am J Med Genet A. 2018:176(2)

| 4 Citations (from Europe

PMC, 2024-03-16)

29019975

Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease. [PMID: 29019975]

eGTEx Project.

Abstract

Genetic variants have been associated with myriad molecular phenotypes that provide new insight into the range of mechanisms underlying genetic traits and diseases. Identifying any particular genetic variant's cascade of effects, from molecule to individual, requires assaying multiple layers of molecular complexity. We introduce the Enhancing GTEx (eGTEx) project that extends the GTEx project to combine gene expression with additional intermediate molecular measurements on the same tissues to provide a resource for studying how genetic differences cascade through molecular phenotypes to impact human health.

Nat Genet. 2017:49(12)

| 92 Citations (from Europe

PMC, 2024-03-16)

25954001

Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. [PMID: 25954001]

GTEx Consortium.

Abstract

Understanding the functional consequences of genetic variation, and how it affects complex human disease and quantitative traits, remains a critical challenge for biomedicine. We present an analysis of RNA sequencing data from 1641 samples across 43 tissues from 175 individuals, generated as part of the pilot phase of the Genotype-Tissue Expression (GTEx) project. We describe the landscape of gene expression across tissues, catalog thousands of tissue-specific and shared regulatory expression quantitative trait loci (eQTL) variants, describe complex network relationships, and identify signals from genome-wide association studies explained by eQTLs. These findings provide a systematic understanding of the cellular and biological consequences of human genetic variation and of the heterogeneity of such effects among a diverse set of human tissues.

Science. 2015:348(6235)

| 2873 Citations (from Europe

PMC, 2024-03-16)

25954002

Human genomics. The human transcriptome across tissues and individuals. [PMID: 25954002]

Melé M, Ferreira PG, Reverter F, DeLuca DS, Monlong J, Sammeth M, Young TR, Goldmann JM, Pervouchine DD, Sullivan TJ, Johnson R, Segrè AV, Djebali S, Niarchou A, GTEx Consortium, Wright FA, Lappalainen T, Calvo M, Getz G, Dermitzakis ET, Ardlie KG, Guigó R.

Abstract

Transcriptional regulation and posttranscriptional processing underlie many cellular and organismal phenotypes. We used RNA sequence data generated by Genotype-Tissue Expression (GTEx) project to investigate the patterns of transcriptome variation across individuals and tissues. Tissues exhibit characteristic transcriptional signatures that show stability in postmortem samples. These signatures are dominated by a relatively small number of genes—which is most clearly seen in blood—though few are exclusive to a particular tissue and vary more across tissues than individuals. Genes exhibiting high interindividual expression variation include disease candidates associated with sex, ethnicity, and age. Primary transcription is the major driver of cellular specificity, with splicing playing mostly a complementary role; except for the brain, which exhibits a more divergent splicing program. Variation in splicing, despite its stochasticity, may play in contrast a comparatively greater role in defining individual phenotypes.

Science. 2015:348(6235)

| 697 Citations (from Europe

PMC, 2024-03-16)

26484571

A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project. [PMID: 26484571]

Carithers LJ, Ardlie K, Barcus M, Branton PA, Britton A, Buia SA, Compton CC, DeLuca DS, Peter-Demchok J, Gelfand ET, Guan P, Korzeniewski GE, Lockhart NC, Rabiner CA, Rao AK, Robinson KL, Roche NV, Sawyer SJ, Segrè AV, Shive CE, Smith AM, Sobin LH, Undale AH, Valentino KM, Vaught J, Young TR, Moore HM, GTEx Consortium.

Abstract

The Genotype-Tissue Expression (GTEx) project, sponsored by the NIH Common Fund, was established to study the correlation between human genetic variation and tissue-specific gene expression in non-diseased individuals. A significant challenge was the collection of high-quality biospecimens for extensive genomic analyses. Here we describe how a successful infrastructure for biospecimen procurement was developed and implemented by multiple research partners to support the prospective collection, annotation, and distribution of blood, tissues, and cell lines for the GTEx project. Other research projects can follow this model and form beneficial partnerships with rapid autopsy and organ procurement organizations to collect high quality biospecimens and associated clinical data for genomic studies. Biospecimens, clinical and genomic data, and Standard Operating Procedures guiding biospecimen collection for the GTEx project are available to the research community.

Biopreserv Biobank. 2015:13(5)

| 423 Citations (from Europe

PMC, 2024-03-16)

23715323

The Genotype-Tissue Expression (GTEx) project. [PMID: 23715323]

GTEx Consortium.

Abstract

Genome-wide association studies have identified thousands of loci for common diseases, but, for the majority of these, the mechanisms underlying disease susceptibility remain unknown. Most associated variants are not correlated with protein-coding changes, suggesting that polymorphisms in regulatory regions probably contribute to many disease phenotypes. Here we describe the Genotype-Tissue Expression (GTEx) project, which will establish a resource database and associated tissue bank for the scientific community to study the relationship between genetic variation and gene expression in human tissues.

Nat Genet. 2013:45(6)

| 4162 Citations (from Europe

PMC, 2024-03-16)

Ranking

All databases:

13/6000

(99.8%)

Genotype phenotype and variation:

4/852

(99.648%)

Expression:

3/1143

(99.825%)

13

Total Rank

8,246

Citations

749.636

z-index

Community reviews

Not Rated

Data quality & quantity:

Content organization & presentation

System accessibility & reliability:

Submit a review

Word cloud

Tags

DNA

RNA

Genotype phenotype and variation

Expression

normal tissue

tissue site

eQTL

RNA-seq

Related Databases

Citing

Cited by

Record metadata

Created on: 2019-07-30

Curated by:

Lina Ma [2019-07-31]

Lina Ma [2019-07-30]

GTEx

Previous

Next

GTEx数据库简介(1) - 知乎

GTEx数据库简介(1) - 知乎切换模式写文章登录/注册GTEx数据库简介(1)HuaMD医学大数据分享医学大数据知识----医学大数据及其综合分析(四)Hua+医学大数据 出品(转载请注明出处链接,翻版必究)(HuaPlusMD通过整合多种人类和动物数据库,建立了可靠的大数据库,为您提供疾病动物模型和临床大数据综合分析。链接:https://www.huaplusmd.com)前言:“大数据”概念早已出现,目前我们对(医学)大数据了解有多少呢?本平台将对医学大数据进行系统的介绍,并对大数据综合分析进行分享(每周更新)。分享的内容将主要涵盖大数据库(基因、蛋白数据库等)/生物银行介绍(UK Biobank, Finnish Biobanks, China Kadoorie Biobank, BioBank Japan, TCGA, GWAS catalog,GTEx等),疾病动物模型数据库(如GeneNetwork, BXD),大数据库的综合使用(如Mendelian randomization),组学数据分析等。(分享的其他系列内容请见:https://www.huaplusmd.com/knowledge) 每个个体的不同的器官组织的基因(Gene)都是相同的,但为什么有的表型为肝脏组织,帮助人类代谢?有的是肌肉组织,帮助人类运动?其原因是,不同的人体组织表达的基因并不相同。GTEx项目,通过收集健康人体的不同组织样本,尝试了解人类不同组织/器官的特异性基因表达。 从本期开始,我们将介绍GTEx数据库。这是一个值得大家深度学习的数据库。GTEx项目,全称Genotype-Tissue Expression (基因型-组织表达) ,主要由美国NIH(国立卫生研究院)的公共基金计划连续资助了10年(2010-2019)的项目。(特别希望我国也能支持,这种长期的大队列的人体基础研究,能使非敏感数据开源,接受国际同行的评议。功在当代、利在千秋!) GTEx项目是用来研究人类不同组织的特异性基因表达和调节的。GTEx 项目最终的数据库(第八版,V8),包括来自于838位生前健康的人类捐献者的DNA数据(包含Whole Genome Sequencing (WGS) 和 Whole Exome Sequencing (WES));17382 份RNA-seq 数据,其来自于近1000个人类个体,涵盖54个不同组织器官部位(目前世界唯一能收集这么全的健康人体组织样本);以及2个来自捐献者血液和皮肤的细胞系。该数据库应用:· 评价不同组织特异性基因表达和调节;· 进行GWAS研究 (genome-wide association study);· 可以用来探索遗传变异对复杂疾病和特征的影响。应用举例:GTEx的研究人员,通过GTEx数据库,设计一种统计方法,称为PrediXcan,该方法能够通过基因序列,推测基因的活性或表达量;然后,PrediXcan能够将推测的基因活性和观测到的疾病特征相关联,从而预测疾病。PrediXcan已经成功地发现与多种疾病相关的特异基因,这些疾病包括 冠状动脉疾病、克罗恩病、类风湿性关节炎、 1 型糖尿病 和 双相情感障碍。 该项目创建了GTEx Portal(https://gtexportal.org/home/),该平台提供开放获取的数据,包括基因表达、QTLs 及 生理组织学 图片。 GTEx项目,也同时建立了自己的生物银行(https://gtexportal.org/home/biobank),包含来自约960位生前健康的捐赠者的组织标本的,包括肺脏、脑、胰腺、皮肤等等。如果需要,还可以申请获取留存的生物样本。GTEx联盟,在世界顶刊上Science, Nature上发表的代表性文章列表:· 2015年,GTEx项目发布了第一个阶段性成果,一次性在Science上发表3篇研究成果:The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humansThe GTEx Consortium.Science. 8 May 2015. 348(6235):648-660. doi:10.1126/science. PMID: 25954001 The human transcriptome across tissues and individualsMelé M, Ferreira PG, Reverter F, DeLuca DS, Monlong J et al.Science. 8 May 2015. 348(6235):660-665. doi: 10.1126/science.aaa0355 Effect of predicted protein-truncating genetic variants on the human transcriptomeRivas MA, Pirinen M, Conrad DF, Lek M, Tsang EK et al.Science. 8 May 2015. 348(6235):666-669. doi:10.1126/science.1261877. · 2017年,GTEx项目发布了进一步成果,一次性在Nature发表4篇研究成果:Genetic effects on gene expression across human tissuesThe GTEx Consortium.Nature. 12 Oct 2017. 550: 204-213. Epub 11 Oct 2017. doi:10.1038/nature24277The impact of rare variation on gene expression across tissuesLi X, Kim Y, Tsang EK, Davis JR, Damani FN et al.Nature. 12 Oct 2017. 550: 239-243. Epub 11 Oct 2017. doi:10.1038/nature24267Landscape of X chromosome inactivation across human tissuesTukiainen T, Villani AC, Yen A, Rivas MA, Marshall JL et al.Nature. 12 Oct 2017. 550: 244-248. Epub 11 Oct 2017. doi:10.1038/nature24265Dynamic landscape and regulation of RNA editing in mammalsTan MH, Li Q, Shanmugam R, Piskol R, Kohler J et al.Nature. 12 Oct 2017. 550:249-254. Epub 11 Oct 2017. doi:10.1038/nature24041· 2019-2022年,GTEx项目又连续发布了项目的成果,在Science发表7篇研究成果:2022Single-nucleus cross-tissue molecular reference maps toward understanding disease gene functionEraslan G, et al.Science. 376 (abl4290), 13 May 2022. doi:10.1126/science.abl42902020The GTEx Consortium atlas of genetic regulatory effects across human tissuesThe GTEx Consortium.Science. 369 (1318-1330), 10 Sep 2020. doi:10.1126/science.aaz1776Cell type specific genetic regulation of gene expression across human tissuesKim-Hellmuth* S, Aguet* F, Oliva M, Muñoz-Aguirre M, Kasela S, et al.Science. 369 (eaaz8528), 10 Sep 2020. doi:10.1126/science.aaz8528Transcriptomic signatures across human tissues identify functional rare genetic variationFerraro* NM, Strober* BJ, Einson J, Abell NS, Aguet F, et al.Science. 369 (aaz5900), 10 Sep 2020. doi:10.1126/science.aaz5900Determinants of telomere length across human tissuesDemanelis K, Jasmine F, Chen LS, Chernoff M, Tong L, et al.Science. 369 (aaz6876), 10 Sep 2020. doi:10.1126/science.aaz6876The impact of sex on gene expression across human tissuesOliva* M, Muñoz-Aguirre* M, Kim-Hellmuth* S, Wucher V, Gewirtz ADH, et al.Science. 369 (aba3066), 10 Sep 2020. doi:10.1126/science.aba30662019RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissuesYizhak K, Aguet F, Kim J, Hess JM, Kübler K et al.Science. 07 June 2019. 364(6444). doi:10.1126/science.aaw0726 如果你可以看youtube视频,可以看一下Prof. Eric Lander (Funding director, Broad Institute) 等对GTEx的简单介绍:https://www.youtube.com/watch?v=PhK186A7Ryo---end---—如果喜欢,快分享给你的朋友们吧—关注公众号,更多精彩内容等着你!原文链接:https://www.huaplusmd.com/knowledgeHua+医学大数据 出品 (医学大数据综合分析,HuaPlusMD坚持专业和认真)。如果您有医学大数据综合分析方面需求欢迎联系我们:https://www.huaplusmd.com/往期回顾:医学大数据及其综合分析(总纲)医学大数据及其综合分析(一)—— GEO数据库介绍 (1)医学大数据及其综合分析(一)—— GEO数据库介绍 (2)医学大数据及其综合分析(二)—— BXD小鼠数据库介绍 (1)医学大数据及其综合分析(二)—— BXD小鼠数据库/GeneNetwork介绍 (2)医学大数据及其综合分析(二)—— BXD小鼠数据库/GeneNetwork介绍 (3)医学大数据及其综合分析(二)—— BXD小鼠数据库/GeneNetwork介绍 (4)医学大数据及其综合分析(三)—— eQTLGen Consortium数据库简介(1)医学大数据及其综合分析(三)—— eQTLGen Consortium数据库简介(2)医学大数据及其综合分析(X)—— 实例分析1:中年发福:人体代谢率 不背此锅新冠肺炎(COVID-19)的致死率参考文献:[1] https://commonfund.nih.gov/GTex.[2] https://gtexportal.org/home/发布于 2022-10-24 04:27大数据​赞同 21​​2 条评论​分享​喜欢​收藏​申请

GTEx数据库简介(3):数据的获取 - 知乎

GTEx数据库简介(3):数据的获取 - 知乎切换模式写文章登录/注册GTEx数据库简介(3):数据的获取HuaMD医学大数据分享医学大数据知识----医学大数据及其综合分析(四)Hua+医学大数据 出品(转载请注明出处链接,翻版必究)(HuaPlusMD通过整合多种人类和动物数据库,建立了可靠的大数据库,为您提供疾病动物模型和临床大数据综合分析。链接:https://www.huaplusmd.com)前言:“大数据”概念早已出现,目前我们对(医学)大数据了解有多少呢?本平台将对医学大数据进行系统的介绍,并对大数据综合分析进行分享(每周更新)。分享的内容将主要涵盖大数据库(基因、蛋白数据库等)/生物银行介绍(UK Biobank, Finnish Biobanks, China Kadoorie Biobank, BioBank Japan, TCGA, GWAS catalog等),疾病动物模型数据库(如GeneNetwork, BXD),大数据库的综合使用(如Mendelian randomization),组学数据分析等。同时也会定期对一些医学大数据的使用进行实例分析。(分享的其他系列内容请见:https://www.huaplusmd.com/knowledge) 本期将对GTEx的数据下载和使用进行简介。GTEx的主要优势是:可以获取人类各种组织器官的基因表达。一般当我们做研究或药物开发时,往往希望药物/干预发生在特定的组织器官,降低副作用。例如,关于肥胖研究,我们往往会将研究的重点放在脂肪组织。而目前大多数数据库,并不能获取特异组织表达器官的基因表达,尤其是人类数据库,可谓非常难得。· 如何获得GTEx数据库的数据:ü 打开GTEx Portal: https://gtexportal.org/home/点击download >>Open Access Dataü 进入下载页面,如下图所示。在左侧(红框中),我们可以看到不同的分析版本,我们都可以用,但推荐使用V8 和V9。其中V9目前只提供snRNA-Seq data(单细胞核RNA测序技术)和Long Read RNASeq data(长读转录组,这个转录组主要是研究遗传变异在转录副本结构中的作用)。ü 这里重点说一下V8版的数据,如下图。V8数据主要有:1) RNAseq的BAM文件,全外显子Seq,全基因组Seq2) 基因型Calls3) OMNI SNP 阵列文件4) Affymetrix表达阵列, 等ü 注释文件(Annotations):下载红框的文件就可以,主要是介绍样本的基本信息,包括样本ID,组织器官类型,RIN,测试使用的技术。ü RNAseq数据:也是我们最常使用的数据。包括Read counts, TPM, Exon-exon junction read counts, transcript read count/TPM, Exon read counts。数据也可以分组织进行下载(有read counts 和 TPM两种数据)。ü 另外,GTEx还做了很多的QTL分析(不了解QTL的同学,请翻书到前面 eQTL, cis-eQTL, trans-eQTL介绍和获取):包括Single-Tissue cis-QTL Data,Single-Tissue trans-QTL Data,Multi-Tissue QTL Data,Single Tissue cis-RNA Editing QTL Data等等--------------end--------------—如果喜欢,快分享给你的朋友们吧—关注公众号,更多精彩内容等着你!原文链接:https://www.huaplusmd.com/knowledgeHua+医学大数据 出品 (医学大数据综合分析,HuaPlusMD坚持专业和认真)。如果您有医学大数据综合分析方面需求欢迎联系我们:https://www.huaplusmd.com/往期回顾:医学大数据及其综合分析(总纲)医学大数据及其综合分析(一)—— GEO数据库介绍 (1)医学大数据及其综合分析(一)—— GEO数据库介绍 (2)医学大数据及其综合分析(二)—— BXD小鼠数据库介绍 (1)医学大数据及其综合分析(二)—— BXD小鼠数据库/GeneNetwork介绍 (2)医学大数据及其综合分析(二)—— BXD小鼠数据库/GeneNetwork介绍 (3)医学大数据及其综合分析(二)—— BXD小鼠数据库/GeneNetwork介绍 (4)医学大数据及其综合分析(三)—— eQTLGen Consortium数据库简介(1)医学大数据及其综合分析(三)—— eQTLGen Consortium数据库简介(2)医学大数据及其综合分析(四)—— GTEx数据库简介(1)医学大数据及其综合分析(四)—— GTEx数据库简介(2)医学大数据及其综合分析(五)---- 国际原子能机构“双标水”数据库 (IAEA DLW)医学大数据及其综合分析(X)—— 实例分析1:中年发福:人体代谢率 不背此锅新冠肺炎(COVID-19)的致死率参考文献:[1] https://gtexportal.org/home/发布于 2022-12-21 10:09・IP 属地加拿大数据库数据获取​赞同 12​​3 条评论​分享​喜欢​收藏​申请

GTEx Mobile Site

Mobile SiteWe're sorry but gtex-mobile-site doesn't work properly without JavaScript enabled. Please enable it to contin

GTEx数据库 - 简书

数据库 - 简书登录注册写文章首页下载APP会员IT技术GTEx数据库Hayley笔记关注赞赏支持GTEx数据库GTEx项目对来自人体多个组合和器官的样本,同时进行了转录组测序和基因分型分析,构建了一个组织特异性的基因表达和调控的数据库:Genotype-Tissue Expression (GTEx)

1. 背景知识

一期

2015年,GTEx发布了第一个阶段性成果,一次性在Science杂志上发表三篇研究成果,该成果还被选为封面文章。GTEx的研究从175名死者身上采集到了1641个尸检样本,这些样本来自54个不同的身体部位,对几乎所有转录基因的基因表达模式进行了观察,从而够确定基因组中影响基因表达的特定区域。另外两篇文章之一从人所有组织中的基因表达谱进行了描述,证明了组织特异性的某些基因往往决定了组织特异性基因的表达调控;另一篇解释了截短的蛋白变异体如何影响组织中的基因表达。

The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans

The human transcriptome across tissues and individuals

Effect of predicted protein-truncating genetic variants on the human transcriptome

二期

在2017年,一次性在nature发表4篇研究成果,GTEx研究联盟的研究收集并研究了来自449名生前健康的人类捐献者的7000多份尸检样本,涵盖44个组织(42种不同的组织类型),包括31个实体器官组织、10个脑分区、全血、两个来自捐献者血液和皮肤的细胞系,作者利用这些样本研究基因表达在不同组织和个体中有何差异。题为“Landscape of X chromosome inactivation across human tissues”和“Dynamic landscape and regulation of RNA editing in mammals”的论文,采用GTEx数据探讨了与基因表达相关联的基因变异如何能够调节RNA编辑和X染色体失活现象。

对于所有的样本,主要进行了以下三种分析

RNA seq

通过illumina Truseq试剂盒构建polyA+文库,采用Hiseq 2000/2500进行测序,对于下机数据,采用STAR进行比对,参照选择的是gencode V19版本的gtf文件,进行了以下3个level的定量

gene-level:采用RNAseQC软件,对基因的raw count和TPM两种方式进行定量

exon-level:对exon的raw count进行定量

transcript-level:采用RSEM进行转录本水平的定量

genotype

通过WGS对样本进行分型, 采用的是GATK germline variants calling的流程,步骤如下

bwa-mem alignment

picard markduplicate

BQSR

indel realign

haplotypeCaller

eQTL

通过FastQTL软件进行cis-eQTL分析,将基因型和基因表达量进行关联。

通过官网可以查看基因表达量和eQTL分析的结果,以TP53为例,每个基因给出了以下3个层级的表达量

Isoform Expression

Exon Expression

Junction Expression

2. 数据库内容介绍和数据下载

通常是直接去 https://gtexportal.org/ 找到可以下载(在)的数据集,如下:

现在已经更新到v8了,v9是单细胞的数据

其中,对我们来说最重要的就是 表达矩阵, 可以下载图中 gene read counts 这个496M的文件,表达矩阵里面的样本ID肯定是数据库组织者自定义的,所以我们还需要找到样本ID的注释信息。

3. 数据分析

3.1 读入矩阵

GTEx<-read.table("GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_reads.gct", skip = 2, header = TRUE, sep = "\t")

save(GTEx,file = 'GTEx.Rdata')

GTEx[1:4,1:4] ##行是基因 列是样本

# Name Description GTEX.1117F.0226.SM.5GZZ7 GTEX.1117F.0426.SM.5EGHI

# 1 ENSG00000223972.5 DDX11L1 0 0

# 2 ENSG00000227232.5 WASH7P 187 109

# 3 ENSG00000278267.1 MIR6859-1 0 0

# 4 ENSG00000243485.5 MIR1302-2HG 1 0

colnames(GTEx)

3.2 读入注释信息

SAMPLE:样本名,和GTEx矩阵的列对应

SMTS: Tissue Type, area from which the tissue sample was taken.

SMTSD: Tissue Type, more specific detail of tissue type

a=read.table('GTEx_Analysis_v8_Annotations_SampleAttributesDS.txt',

header = T,sep = '\t',quote = '')

table(a$SMTS)

3.3 提取感兴趣的组织进行分析

以心脏为例

heart_gtex=GTEx[,gsub('[.]','-',colnames(GTEx)) %in% a[a$SMTS=='Heart',1]]

rownames(heart_gtex)=GTEx[,1]

dat=heart_gtex

就是把属于Heart这个组织的样本名挑选出来,在上面的表达矩阵里面取子集即可。

值得注意的是这个时候的表达矩阵基因名不是symbol,需要进行ID转换

ids=GTEx[,1:2]

head(ids)

colnames(ids)=c('probe_id','symbol')

dat=dat[ids$probe_id,]

dat[1:4,1:4]

ids$median=apply(dat,1,median)

ids=ids[order(ids$symbol,ids$median,decreasing = T),]

ids=ids[!duplicated(ids$symbol),]

dat=dat[ids$probe_id,]

rownames(dat)=ids$symbol

dat[1:4,1:4]

heart_gtex=dat

save(heart_gtex,file = 'heart_gtex_counts.Rdata')

这样就得到了正常的心脏组织样本表达矩阵,可以进行的分析。

4. 不同组织的基因表达分析

比较心、肺、血中S100A8的表达

organ_gtex=GTEx[,gsub('[.]','-',colnames(GTEx)) %in% a[a$SMTS %in% c('Heart','Blood','Lung'),1]]

rownames(organ_gtex)=GTEx[,1]

dat=organ_gtex

ids=GTEx[,1:2]

head(ids)

colnames(ids)=c('probe_id','symbol')

dat=dat[ids$probe_id,]

dat[1:4,1:4]

ids$median=apply(dat,1,median)

ids=ids[order(ids$symbol,ids$median,decreasing = T),]

ids=ids[!duplicated(ids$symbol),]

dat=dat[ids$probe_id,]

rownames(dat)=ids$symbol

dat[1:4,1:4]

organ_gtex=dat

#save(organ_gtex,file = 'organ_gtex_counts.Rdata')

b=a[a$SMTS %in% c('Heart','Blood','Bone Marrow','Lung'),c(1,6)]

c <- b[b$SAMPID %in% gsub('[.]','-',colnames(dat)),]

colnames(dat) <- gsub('[.]','-',colnames(dat))

dat <- t(dat)

dat <- as.data.frame(dat)

dat$group <- c$SMTS

library(dplyr)

d <- group_by(dat,group)

summarise(d,median=median(S100A8),n=n())

## A tibble: 3 x 3

# group median n

#

# 1 Blood 52504 929

# 2 Heart 730 861

# 3 Lung 10942. 578

参考

GTEx数据库-TCGA数据挖掘的好帮手

GTEx:基因型和基因表达量关联数据库

©著作权归作者所有,转载或内容合作请联系作者 禁止转载,如需转载请通过简信或评论联系作者。人面猴序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...沈念sama阅读 148,057评论 1赞 315死咒序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...沈念sama阅读 63,232评论 1赞 263救了他两次的神仙让他今天三更去死文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...开封第一讲书人阅读 98,663评论 0赞 217道士缉凶录:失踪的卖姜人 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...开封第一讲书人阅读 41,992评论 0赞 188港岛之恋(遗憾婚礼)正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...茶点故事阅读 49,949评论 1赞 266恶毒庶女顶嫁案:这布局不是一般人想出来的文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...开封第一讲书人阅读 39,305评论 1赞 183城市分裂传说那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...沈念sama阅读 30,849评论 2赞 282双鸳鸯连环套:你想象不到人心有多黑文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...开封第一讲书人阅读 29,611评论 0赞 175万荣杀人案实录序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...沈念sama阅读 33,059评论 0赞 222护林员之死正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...茶点故事阅读 29,695评论 2赞 226白月光启示录正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...茶点故事阅读 31,056评论 1赞 236活死人序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...沈念sama阅读 27,495评论 2赞 220日本核电站爆炸内幕正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...茶点故事阅读 31,967评论 3赞 216男人毒药:我在死后第九天来索命文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...开封第一讲书人阅读 25,753评论 0赞 9一桩弑父案,背后竟有这般阴谋文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...开封第一讲书人阅读 26,255评论 0赞 175情欲美人皮我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...沈念sama阅读 34,086评论 2赞 239代替公主和亲正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...茶点故事阅读 34,227评论 2赞 241推荐阅读更多精彩内容TCGA数据分析系列(二):数据库之GEPIA2公众号“生信小课堂” TCGA数据分析课程:生物信息学教学 所谓工欲善其事,必先利其器,从今天开始,我们来介绍TC...生信小课堂阅读 2,581评论 2赞 5GEPIA2&cBioPortal数据库介绍1.GEPIA2 GEPIA服务器已经运行了两年,为来自42个国家的约11万名用户处理了约28万份分析请求。GEP...小梦游仙境阅读 10,829评论 1赞 26Week23 — WGCNA分析+公共数据库挖掘你感兴趣的癌症第23周 2018 — 10.21-10.27 原文链接: Application of weighted gen...六六_ryx阅读 4,594评论 0赞 48单细胞入门【3】:好用不踩坑的单细胞数据库合集单细胞入门【1】:单细胞测序方法该如何选择?[https://www.jianshu.com/p/2e400f68...尐尐呅阅读 4,501评论 0赞 20circRNA相关数据库Circbase (http://cirbase.org/) 这个数据库收集了几千条在真核细胞表达的 circRN...程凉皮儿阅读 1,028评论 0赞 1评论1赞2424赞25赞赞赏更

Genotype-Tissue Expression (GTEx) | NIH Common Fund

Genotype-Tissue Expression (GTEx) | NIH Common Fund

Skip to main content

An official website of the United States government

Here's how you know

Here's how you know

Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock (

Lock

Locked padlock

) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Header Top Menu

National Institutes of Health

Division of Program Coordination Planning and Strategic Initiatives (DPCPSI)

Search the Common Fund Website test

Sitemap

Home

Sitemap

Subscribe

Our Programs

Current Programs

4D Nucleome (4DN)

Acute to Chronic Pain Signatures (A2CPS)

Bridge to Artificial Intelligence (Bridge2AI)

Cellular Senescence Network (SenNet)

Common Fund Data Ecosystem (CFDE)

Community Partnerships to Advance Science for Society (ComPASS)

Complement Animal Research In Experimentation (Complement-ARIE)

Diversity Program Consortium (DPC): Enhancing the Diversity of the NIH-Funded Workforce

Extracellular RNA Communication (ExRNA)

Faculty Institutional Recruitment for Sustainable Transformation (FIRST)

Gabriella Miller Kids First (Kids First)

Global Health

Harnessing Data Science for Health Discovery and Innovation in Africa (DS-I Africa)

High-Risk, High-Reward Research (HRHR)

Human BioMolecular Atlas Program (HuBMAP)

Human Virome Program

Illuminating the Druggable Genome (IDG)

Metabolomics

Molecular Transducers of Physical Activity in Humans (MoTrPAC)

Nutrition for Precision Health, powered by the All of Us Research Program

Somatic Cell Genome Editing (SCGE)

Somatic Mosaicism across Human Tissues (SMaHT)

Stimulating Peripheral Activity to Relieve Conditions (SPARC)

Transformative High-Resolution Cryoelectron Microscopy (CryoEM)

Transformative Research to Address Health Disparities and Advance Health Equity

Venture Program

Archived Initiatives

Advancing Health Communication Science and Practice

Big Data to Knowledge (BD2K)

Bioinformatics and Computational Biology

Bridging Interventional Development Gaps (BrIDGs)

Building Blocks, Biological Pathways and Networks (BBPN)

Clinical Research Policy Analysis and Coordination (CRpac)

Clinical and Translational Science Awards (CTSAs)

Epigenomics

Genotype-Tissue Expression (GTEx)

Glycoscience

Gulf Oil Spill

Healthcare Systems Research (HCS) Collaboratory

Health Economics

Human Microbiome Project (HMP)

Interdisciplinary Research (IR)

Knockout Mouse Phenotyping Program (KOMP2)

Library of Integrated Network-based Cellular Signatures (LINCS)

Molecular Libraries and Imaging

Nanomedicine

National Electronics Clinical Trials and Research (NECTAR)

New Models of Data Stewardship (NMDS)

NIH Medical Research Scholars Program (MRSP)

Patient-Reported Outcomes Measurement Information System (PROMIS)

Protein Capture Reagents Program (PCRP)

Regenerative Medicine Program (RMP)

Regulatory Science

Science of Behavior Change (SOBC)

Single Cell Analysis Program (SCAP)

Strengthening the Biomedical Research Workforce

Structural Biology

Undiagnosed Diseases Network (UDN)

COVID-19 Research

Sex as a Biological Variable

Research Funding

Funding Opportunities

Funding Policy

Administrative Supplements

News & Media

Recent News & Videos

Science Highlights

News

Press Releases

Archives

Videos

Accessible Videos

Strategic Planning

Planning Process

Updates

Criteria

Reports

Evaluation & Assessment

Evaluation Report Library

Presentations

BEST Data

About Us

Who We Are & What We Do

History

Congressional Budget Requests

Office of Strategic Coordination

OSC Contacts

Careers

Genotype-Tissue Expression Program (GTEx)

Genotype-Tissue Expression Program (GTEx)

Breadcrumb

Home

Genotype-Tissue Expression (GTEx)

GTEx

Genotype-Tissue Expression Program (GTeX)

For the Public

Health Relevance

Science Highlights

For Researchers

Funding Opportunities

Funded Research

NIH Working Group

Program Publications

Scientific Meetings

Program Resources

Program Snapshot

The Common Fund's Genotype-Tissue Expression (GTEx) Program established a data resource and tissue bank to study the relationship between genetic variants (inherited changes in DNA sequence) and gene expression (how genes are turned on and off) in multiple human tissues and across individuals. GTEx also increased our understanding of how gene expression varies between male and female. 

The GTEx program has transitioned from Common Fund support. Common Fund programs are strategic investments that achieve a set of high-impact goals within a 5-10 year timeframe. At the conclusion of each program, deliverables will transition to other sources of support or use within the scientific community.

The GTEx program supported by the Common Fund from 2010 to 2019. Currently, GTEx data are widely used as a reference dataset to design new methods and tools, such as a statistical method called PrediXcan. This novel method is used to predict the expression of a gene using DNA sequence data. PrediXcan also predicts visible traits of diseases. GTEx researchers used this method to identify specific genes associated with five diseases: bipolar disorder, coronary artery disease, Crohn's disease, rheumatoid arthritis and type 1 diabetes. The GTEx’s final dataset (V8) contains DNA data from 838 postmortem donors and 17,382 RNA-seq across 54 tissue sites and two cell lines. GTEx data is accessible through the National Center for Biotechnology Information’s database of Genotypes and Phenotypes (dbGaP), the National Human Genome Research Institute's (NHGRI) Genomic Analysis and Visualization and Informatics Labspace (AnVIL) and GTEx Portal.  GTEx resources are valuable tools for exploring the impact of genetic variation on complex traits and diseases.

Program Major Accomplishments

Highlights of the Genotype-Tissue Expression (GTEx) Program major accomplishments are:

Established a comprehensive catalog of genetics variants that effect gene expression across multiple tissue for the research community to evaluate tissue-specific gene expression and regulation in many different tissues. Genetic variants that influence how genes behave are called expression quantitative trait loci (eQTLs). Researchers are using GTEx data to enhance the functional interpretation of genome-wide association study (GWAS) findings from and identification of disease-relevant genes.

Created an online data resource (GTEx Portal) for storing, cataloging, searching, and sharing aggregated level data. Researchers used data from the GTEx Portal to publish over 7,000 papers.

GTEx data was integrated into genomics browsers including the UCSC Genome Browser and Ensembl to visualize gene and variant information. 

Developed a biobank of tissue biospecimens (e.g. lung, brain, pancreas, skin, etc) as well as RNA, DNA, blood samples and cell lines from ~960 donors. The GTEx biobank also features an image library of the tissue samples for researchers to browse the complete collection. These biospecimens are stored at the Broad Institute of Harvard and MIT. 

Please note that since the GTEx program is no longer supported by the Common Fund, the program website is being maintained as an archive and will not be updated on a regular basis. 

Video

Watch a video on the GTEx project for more details. 

The GTEx (Genotype-Tissue Expression) Project identified genetic variants that influence how genes are turned on and off in human tissues and organs. Genetic variants that influence how genes behave are called expression quantitative trait loci (eQTLs). These eQTLs regulate the behavior of genes like a light-switch turns on a light in a room. A GTEx pilot study found that the number of eQTLs differ in multiple tissues and individuals. 

GTEx collected multiple human tissues (i.e. brain, heart, lung, breast, skin and whole blood etc.) from ~960 donors and over 30,000 samples. These tissues and samples are stored through the National Cancer Institute's Cancer Human Biobank initiative on behalf of GTEx. The GTEx database is available to researchers through the GTEx Portal. GTEx is helping researchers understand the inherited susceptibility to common diseases such as cancer, heart disease, Parkinson’s and diabetes. 

GTEx also included a study to understand the ethical, legal and social issues (ELSI) related to donor recruitment and consent to tissue donation for biobanking purposes. In 2017, the GTEx ELSI researchers published a paper in Genetic Testing and Molecular Biomarkers. The findings indicated that a clear discussion about risks and benefits associated with participation in biobanking research is needed during the consent process.

Program Initiatives

The GTEx Program supported the following initiatives:

Online data resource (GTEx Portal) for storing, cataloging, searching, and sharing aggregated level data

Novel Statistical Methods for Human Gene Expression Quantitative Trait Loci (eQTL) Analysis

Laboratory, Data Analysis, and Coordinating Center (LDACC) for acquiring and analyzing DNA and RNA from multiple human tissues

Enhanced GTEx projects: including additional dimensions beyond gene expression to the GTEx data

Annoucements

Expanding Our View of The Genomic Landscape Using the Genotype-Tissue Expression (GTEx) Data Set

GTEx Data Set Used to Study Biological Changes After Death

GTEx Creates a Reference Data Set to Study Genetic Changes and Gene Expression

GTEx Data Uncovering How Genetic Alterations Contribute to Schizophrenia

GTEx Dataset Helps Determine How Gene Duplications Lead to Genes with New Biological Functions

The GTEx version 8 is now available 

The GTEx Portal has been updated to data release V8 (dbGaP accession phs000424.v8.p2)! This release includes genotype data from approximately 948 post-mortem donors and approximately 17,382 RNA-seq samples across 54 tissue sites and 2 cell lines, with adequate power to detect Expression Quantitative Trait Loci in 48 tissues. Full gene expression datasets are available for download through the GTEx Portal while genotypes and RNA-seq bam files are available via dbGaP.

Genotype-Tissue Expression Project (GTEx) Biospecimens Access Policy

The policy is a mechanism  to allow researchers access to tissues in the GTEx biobank. The policy and related forms can be found on the GTEx Portal. Go directly to GTEx Sample Request Forms.

This page last reviewed on

January 8, 2024

Footer

Home

Our Programs

Research Funding

News & Media

Strategic Planning

Evaluation & Assessment

About Us

Sitemap

Connect

Footer Secondary Menu

NIH.gov

Home

Visitor Information

Frequently Asked Questions

HHS.gov

Freedom of Information Act

No Fear Act

Office of the Inspector General

HHS Vulnerability Disclosure

Web Policies and Notices

USA.gov

government made easy

NIH... Turning Discovery Into Health ®

National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892 U.S. Department of Health and Human Services

GTEx:基因型和基因表达量关联数据库 – 王进的个人网站

>

GTEx:基因型和基因表达量关联数据库 – 王进的个人网站

Skip to content

王进的个人网站

NO PAINS, NO GAINS.

首页

实验方法

分子生物学

CRISPR-Cas9

动物实验

细胞生物学

其他

常用软件

科研软件

图片处理

Image J

统计软件

Graphpad

SPSS

办公软件

小工具

其他

生信分析

ggplot2

R语言

生信资料

Linux系统

其他

新药研发

精彩生活

我的爱情

我爱罗

宝贝yiyi

科研互助

科研互助群

B站代码获取

我的简历

给我留言

GTEx:基因型和基因表达量关联数据库

Home20225月25GTEx:基因型和基因表达量关联数据库

Posted on 2022-05-252022-05-25

GTEx全称如下:Genotype-Tissue Expression

该项目对来自人体多个组合和器官的样本,同时进行了转录组测序和基因分型分析,构建了一个组织特异性的基因表达和调控的数据库。网址如下

https://gtexportal.org/home/

包含的组织类型和样本个数如下图所示

对于所有的样本,主要进行了以下三种分析

1. RNA  seq

通过illumina Truseq试剂盒构建polyA+文库,采用Hiseq 2000/2500进行测序,对于下机数据,采用STAR进行比对,参照选择的是gencode V19版本的gtf文件,进行了以下3个level的定量

gene-level,采用RNAseQC软件,对基因的raw count和TPM两种方式进行定量 exon-level, 对exon的raw count进行定量 transcript-level,采用RSEM进行转录本水平的定量

2. genotype

通过WGS对样本进行分型, 采用的是GATK germline variants calling的流程,步骤如下

bwa-mem alignment picard markduplicate BQSR indel realign haplotypeCaller

3. eQTL

通过FastQTL软件进行cis-eQTL分析,将基因型和基因表达量进行关联。

通过官网可以查看基因表达量和eQTL分析的结果,以TP53为例,每个基因给出了以下3个层级的表达量

Isoform Expression Exon Expression Junction Expression

分别对应转录本,外显子,剪切序列的表达量,对于不同组织中的表达量,以热图的形式进行展示,示意如下

对于基因结构,也进行了可视化,示意如下

eQTL的结果示意如下

提供了以下两种可视化方式,第一种是在单个组织内的小提琴图,eQTL violin plot, 示意如下

第二种用于多个组织间的比较,Multi-tissue eQTL plot, 示意如下

所有的分析结果可以通过官网进行下载,GTEx数据库不仅仅是一个正常组织的基因表达量数据库,其eQTL分析的策略更值得我们借鉴。

打赏赞(1)微海报分享

By 进哥哥

生信资料Tags: GTEx

文章导航

如何用ggalluvial绘制桑基图不等宽柱形图的Excel和R语言实现

发表评论 取消回复邮箱地址不会被公开。 必填项已用*标注评论 名称 *

电子邮件 *

站点

在此浏览器中保存我的姓名、电子邮件和站点地址。

Δ

Search for:

Search

关于我

王 进(Jingle)

本网站主要用于个人科研方法整理以及生活分享,欢迎各位留言一起学习探讨,共同进步。如果想更多的了解我,欢迎查看我的简历。

很多留言不能及时给大家回复讨论,深感歉意!现在太忙了,如果有急需要讨论合作的可以直接加微信,也可以进科研互助群讨论。

近期文章

ggsurvplot生存曲线添加HR和95% CI

24年新版TCGA GDC data portal 2.0界面介绍及数据下载教程

单因素/多因素Logistic回归模型基本介绍及SPSS/GraphPad分析步骤

更新:转录因子靶基因多数据库预测在线工具(主要针对KnockTF数据库)

CRISPRi和CRISPRa:基因表达干预的新利器

近期评论柠檬酸合酶发表在《m6A-IP(MeRIP)-qPCR计算相对表达量》j发表在《2016-2023年NSFC国家自然科学基金信息App》尹发表在《给我留言》张张发表在《亚硫酸盐的测序法(bisulfite sequencing PCR,BSP)》山东大学王永亮发表在《DNAMAN 9.0 | 分子生物学应用软件神器》标签COX

CRISPR-Cas9

Cytoscape

DNA甲基化

endnote

GEO

ggplot2

Graphpad

GTEx

IC50

Image J

Linux

lncRNA

m6A

miRNA

Motif

PCR

PD1/PDL1

PubMed

pull-down

R语言

SCI写作

Shiny

shRNA

SPSS

TCGA

Western Blot

免疫浸润

免疫组化

基因敲除

基金写作

实验动物

富集分析

引物

慢病毒

新药

流式

热图

爬虫

科研热点

类器官

网络

肺癌

衰老

转录因子

分类目录分类目录

选择分类目录

Uncategorized  (4)

实验方法  (204)

   CRISPR-Cas9  (13)

   其他  (34)

   写作投稿  (13)

   分子生物学  (126)

   动物实验  (16)

   细胞生物学  (40)

常用软件  (104)

   Graphpad  (14)

   Image J  (19)

   SPSS  (8)

   其他  (4)

   办公软件  (8)

   图片处理  (22)

   小工具  (29)

   科研软件  (29)

   统计软件  (15)

新药研发  (16)

生信分析  (197)

   Linux系统  (5)

   Python  (2)

   R语言  (139)

   其他  (13)

   机器学习  (2)

   生信资料  (68)

精彩生活  (33)

   宝贝yiyi  (20)

   我爱罗  (7)

功能

登录

条目feed

评论feed

WordPress.org

文章归档 文章归档

选择月份

2024年3月

2024年2月

2024年1月

2023年12月

2023年11月

2023年9月

2023年8月

2023年7月

2023年6月

2023年5月

2023年4月

2023年3月

2023年2月

2023年1月

2022年12月

2022年11月

2022年10月

2022年9月

2022年8月

2022年7月

2022年6月

2022年5月

2022年4月

2022年3月

2022年2月

2022年1月

2021年12月

2021年11月

2021年10月

2021年9月

2021年8月

2021年7月

2021年6月

2021年5月

2021年4月

2021年3月

2021年2月

2021年1月

2020年12月

2020年11月

2020年10月

2020年9月

2020年8月

2020年7月

2020年6月

2020年5月

个人风采

Copyright © 2024 王进的个人网站. All Rights Reserved | 备案号:苏ICP备14058221号| Blog Diary by Theme Palace

来自死亡个体的样本 帮我们读懂疾病背后的基因密码----中国科学院

来自死亡个体的样本 帮我们读懂疾病背后的基因密码----中国科学院

PC / English / 联系我们 / 网站地图 /邮箱

加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页

组织机构

院况简介

院领导集体

机构设置

园区风采

科学研究

创新单元

科技专项

科技奖励

科技期刊

科研进展

成果转化

知识产权与科技成果转化网

工作动态

人才教育

中科院教育简介

中国科学技术大学

中国科学院大学

上海科技大学

工作动态

学部与院士

科学普及

中国科普博览

科普场馆

专题透视

工作动态

科普文章

科普视频

党建与科学文化

工作动态

反腐倡廉

文明天地

文化副刊

信息公开

信息公开规定

信息公开指南

信息公开目录

信息公开申请

信息公开年度报告

信息公开联系方式

首页

组织机构

科学研究

成果转化

人才教育

学部与院士

科学普及

党建与科学文化

信息公开

院况简介

  1949年,伴随着新中国的诞生,中国科学院成立。  作为国家在科学技术方面的最高学术机构和全国自然科学与高新技术的综合研究与发展中心,建院以来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全做出了不可替代的重要贡献。 更多简介 +

院领导集体

侯建国

张亚平

孙也刚

周 琪

汪克强

常 进

丁赤飚

严 庆

孙晓明

翟立新

机构设置

院机关

办公厅

学部工作局

前沿科学与教育局

重大科技任务局

科技促进发展局

发展规划局

条件保障与财务局

人事局

直属机关党委

国际合作局

科学传播局

监督与审计局

离退休干部工作局

派驻机构

中央纪委国家监委驻中国科学院纪检监察组

分院

沈阳分院

长春分院

上海分院

南京分院

武汉分院

广州分院

成都分院

昆明分院

西安分院

兰州分院

新疆分院

院属机构

研究单位

学校

管理与公共支撑单位

新闻出版单位

其他单位

共建单位

投资企业

四类机构

院级非法人单元

所级分支机构

境外机构

群团和其他组织

创新单元

创新单元

国家研究中心

国家重点实验室

国家工程研究中心

国家工程技术研究中心

国家科技资源共享服务平台

院工程实验室

重大科技基础设施

科技奖励

科技奖励

国家最高科学技术奖

国家自然科学奖

国家技术发明奖

国家科学技术进步奖

国家科学技术合作奖

中国科学院杰出科技成就奖

中国科学院国际科技合作奖

中国科学院科技促进发展奖

陈嘉庚科学奖

科技期刊

科技期刊

期刊导航

数字平台

期刊集群

期刊动态

科技专项

中国科学院院级科技专项体系包括战略性先导科技专项、重点部署科研专项、科技人才专项、科技合作专项、科技平台专项5类一级专项,实行分类定位、分级管理。

为方便科研人员全面快捷了解院级科技专项信息并进行项目申报等相关操作,特搭建中国科学院院级科技专项信息管理服务平台。了解科技专项更多内容,请点击进入→

科研进展/ 更多

上海药物所1类抗肿瘤新药HLN601脂质体获批进入临床研究

大连化物所实现室温下电催化甲烷和氧气转化制甲酸

理化所研制的全国产5吨/天氢液化器通过测试验收

沈阳自动化所等在生物制造与纳米机械分析领域获进展

合肥研究院等创制出套娃结构碳管阵列并构筑出小型化滤波电容器

科学家实现全脑光学接口虚拟现实和全脑闭环研究新范式

工作动态/ 更多

“液固循环流化床双氧水直接氧化氯丙烯生产环氧氯丙烷新工艺”通过科技成果评价

山东肥城300MW先进压缩空气储能国家示范项目阵列化蓄热装置完成安装

生物质化学链气化技术项目签约

萃取法短流程生产钒电解液示范线稳定运行

青海盐湖所获批建设青海省盐湖化工产业专利导航服务基地

硼中子俘获治疗项目获第八届“创客中国”总决赛一等奖

尾矿固废资源利用3×185万吨/年流态化磁化焙烧项目签约

宁波材料所获首届浙江省知识产权奖发明专利一等奖

亚热带生态所与长江水电集团签订战略合作协议

金属所组织开展“福建行”科技成果对接活动

分子细胞卓越中心、上海科技大学和翼思生物医药达成合作协议

2023年中国科学院(河南)科技成果发布暨项目对接会开幕

中国科学技术大学(简称“中科大”)于1958年由中国科学院创建于北京,1970年学校迁至安徽省合肥市。中科大坚持“全院办校、所系结合”的办学方针,是一所以前沿科学和高新技术为主、兼有特色管理与人文学科的研究型大学。

中国科学院大学(简称“国科大”)始建于1978年,其前身为中国科学院研究生院,2012年更名为中国科学院大学。国科大实行“科教融合”的办学体制,与中国科学院直属研究机构在管理体制、师资队伍、培养体系、科研工作等方面共有、共治、共享、共赢,是一所以研究生教育为主的独具特色的研究型大学。

上海科技大学(简称“上科大”),由上海市人民政府与中国科学院共同举办、共同建设,由上海市人民政府主管,2013年经教育部正式批准。上科大秉持“服务国家发展战略,培养创新创业人才”的办学方针,实现科技与教育、科教与产业、科教与创业的融合,是一所小规模、高水平、国际化的研究型、创新型大学。

工作动态/ 更多

中国科学院院士姚檀栋获塞里格曼冰晶奖

中国科大教授郝记华获2024年F.W.克拉克奖

​中国科学院大学基础医学及长三角地区生命科学研究生学术论坛举办

全球气候变化下的水资源管理和研究生培养冬季学校开班

第八届植物分类研究高级研修班举办

中国科大学子在中国国际大学生创新大赛获佳绩

科普场馆/ 更多

中国科学院国家授时中心时间科学馆

中国科学院昆明动物研究所昆明动物博物馆

中国科学院合肥物质科学研究院合肥现代科技馆

中国科学院西双版纳热带植物园热带雨林民族文化博物馆

中国科学院动物研究所国家动物博物馆

中国科学院上海昆虫博物馆

工作动态/ 更多

华南植物园举办“植”此绿美 共“树”未来植树活动

南北国家植物园女画家笔下的珍奇植物科普展开幕

上海天文台举办“与光同行”天文科普亲子活动

版纳植物园举办“2024雨林博物科学营”

科普文章/ 更多

太阳打“喷嚏” 地球会怎样

量子,匪夷所思但不“高冷”

卫星也戴“眼镜”——偏振卫星

看宇宙间那一场场盛大的“烟花表演”

科普视频/ 更多

十年,科技创新再出发!

【院士说】群星闪耀时 总会照...

碳中和的创新发展机遇

专题透视/ 更多

科学环游记——2023寒假篇

核心舱成功发射 我们的空间站来...

助力碳达峰、碳中和,科普在行动

工作动态/ 更多

兰州化物所党委理论学习中心组召开专题学习会

微电子所召开党委中心组(扩大)学习会议

沈阳分院分党组召开扩大学习会

成都生物所党委召开2024年第1次支部书记例会

南京天光所召开党委理论学习中心组党风廉政建设专题学习会

上海硅酸盐所召开党委理论学习中心组学习会

文化副刊

诗 歌

书 画

摄 影

散 文

反腐倡廉/ 更多

地理资源所召开2024年度第一次纪委会议

广州分院召开分院纪检组成员、直属机关纪委委员会议

兰州分院纪检组、系统单位纪委召开学习研讨(扩大)会议暨纪监审工作会议

沈阳分院召开2023年度纪监审业务第四次交流会暨纪检组2023年度工作总结会

沈阳自动化所开展纪检干部专题培训

违纪违法举报

文明天地/ 更多

武汉岩土所开展三八妇女节“巾帼绽芳华”活动

武汉植物园开展“春风如你 熠熠芳华” 主题活动

成都文献中心开展“赴春天之约 绽巾帼芳华” 科苑女性主题活动

深圳先进院举办"不负春色 绽放芳华"三八妇女节主题系列活动

新疆生地所开展“芳华悦己,奋勇逐光”主题春日活动

信息公开工作信息

相关规定

信息公开指南

信息公开目录

其他规定

组织结构

工作机构

监督机构

年度报告

2022年度报告

2021年度报告

2020年度报告

2019年度报告

中国科学院学部

基本信息

学部概况

院士大会

院士信息

规章制度

院士章程

增选工作有关规定

其他工作规则与管理办法

工作进展

院士增选

咨询活动

学术科普

学部动态

学部出版物

咨询决策系列

学术引领系列

科学文化系列

其他出版物

陈嘉庚科学奖

机构概况

规章制度

通知公告

中国科学院院部

机构设置

基本情况

院领导集体

组织机构

年度统计与出版物

年度统计

出版物

规章制度

综合性政策文件

学部工作与科技智库

科研活动管理

人力资源管理

党的建设与群团工作

离退休工作

发展规划

专项规划

财政经费

预算决算

重大基建项目

重大采购

院级项目

科学研究

科研创新单元

科研装备

科研进展

成果转化

科技奖励

人事人才

人事任免

人才招聘

招生与培养

国际合作

国际组织

国际奖励

国际奖学金

科学传播

科普资源

科普知识

网站建设

首页 > 每日科学

规模最大人类器官转录组计划公布第三阶段成果 ——

来自死亡个体的样本 帮我们读懂疾病背后的基因密码

2020-10-13

科技日报 张佳星

【字体:大 中 小】

语音播报

视觉中国供图

  人与人的基因序列中99.9%以上是相同的,仅有不到0.1%差异,可是为什么我们却如此不同?

  人们经常把人类基因组序列(30亿对碱基)比喻成一部60亿字的天书,人类基因组计划的测序,只是把天书变成“明文”,人类却仍旧看不懂这些文字所表达的意思。

  一个名叫“基因型-组织表达”(以下简称GTEx)的大型研究项目试图寻找答案——即找到序列与实际性状(疾病)的关系,确定不同基因究竟如何影响表达。GTEx计划是现有规模最大的人类器官转录组研究计划。这项研究由美国国立卫生研究院(NIH)资助,包括麻省理工学院、哈佛大学、芝加哥大学等美国多个知名研究机构的研究人员参与研究,通过对不同性别的死者不同组织、不同器官的基因组、转录组、蛋白质组进行分析,试图把基因组测序的结果“直译”出来。

  经过10年研究,GTEx计划9月上旬公布最新分析成果,数据以系列论文的形式在《科学》《细胞》等杂志上发表。值得一提的是,GTEx数据被广泛用作设计新方法和工具的参考数据集,由此衍生出大量便于更深入研究的统计学方法。

  为生活中的“小烦恼”寻找关联基因

  这里有每个人的小忧虑,欢迎“对号入座”——

  如果你还没到成为中年油腻男的年纪,或许正在担心:为什么我的发际线在不断升高;

  如果你是位压力山大的职场女性,或许正在担心:去年体检的乳腺结节不知道怎么样了,据说乳腺癌患病率很高;

  如果你是名新手宝妈,或许正在担心:我家娃超重了!除了母乳什么也没吃,为什么胖得连脖子都看不到了;

  ……

  在GTEx计划公布的研究结果中,这些问题都在基因组、转录组和蛋白质组的分析中找到了答案。

  这些答案来自海量数据的测序、汇总、分析……依托了大量的创新分析方法。研究者将所有的研究数据汇总形成GTEx数据集,目前已经更新至第八版,其中包括来自838个供体、52个组织、两个细胞系的17382份样品的数据。

  研究者们对这些样品进行全基因组序列的测序分析,转录组表达量的分析,以及相互之间作用关联的分析,以鉴定出哪些基因与哪些性状有密切关联。

  这次研究首次发现,一个被命名为C9orf66的基因,与脱发有关,这个基因在男性中的表达量远高于女性;CCDC88C基因在女性中表达水平较高,它是一种与乳腺癌发病有关的基因;而新手宝妈最关心的婴儿体重,可能与婴儿本身无关,却是和宝妈体内的HKDC1基因密切相关,该基因具有孕期血糖调节功能,它的表达影响女性生育的后代体重。

  当然还有很多与现实生活密切相关的发现,例如一些基因的高表达会促进癌基因的表达;女性比男性长寿的关联基因等,在最新的研究成果中,人们可以对早有迹象的生命活动在人类基因组的浩瀚长图中“按图索骥”,给出功能“注脚”。

  鉴定出与疾病相关的罕见基因突变

  关注并研究人类彼此间不同的0.1%基因,其实由来已久。学界通常将其命名为全基因组关联研究(GWAS),顾名思义,是为了寻找基因与功能之间的关联。

  0.1%的不同基因序列,意味着在整个基因组30亿个碱基对中至少有30万个常见的SNP(单核苷酸多态性,即单碱基的变化)。“GWAS仅研究了常见的SNP位点,这就意味着仍有许多罕见变异尚未鉴定。”有分析认为,比起常见突变,罕见突变的研究需要更精确的测量,换句话说,只有大规模的全基因组分析(至少全外显子测序)才能满足研究的需要。

  在此前发布的第一阶段和第二阶段成果中,GTEx计划也将注意力集中在常见突变对转录组的调控。而这次公布的GTEx计划第三阶段成果终于拓展到了罕见突变。

  相较其他数据库,GTEx最大的优势就是来自各种器官的基因表达。但是由于都是从意外死亡的个体获得的样本,除了性别、年龄等基本信息,GTEx并没有个体非常详尽的性状信息。这次通过与之前做过罕见突变研究的英国生物样本库(UK Biobank)合作,鉴定出许多对基因表达有巨大影响的罕见突变,并找到相对应的关联性状(疾病)。这大大提升了GTEx自身研究的意义。

  GTEx系列研究论文《通过跨器官的转录组信号,鉴定出有功能的罕见突变》中的研究结果表明,人类基因组包含的罕见突变会增加某些疾病风险,研究通过对838个全基因组数据,及多种器官的转录组数据的分析,检测出了与极端基因表达量有关的罕见突变。研究者整合了来自49个器官的三种极端表达信号,最终首次鉴定出了具有高影响的罕见突变,并且和疾病做了关联。

  研究同时给出鉴定罕见突变的方法,可用于对个人基因组的解释和罕见突变的发现,为研究罕见突变的基因功能、提高疾病检测能力提供了有力手段。

  试图揭示不同器官中端粒长短规律

  端粒是染色体的末端。由于端粒的长度反映细胞复制史及复制潜能,它被称作细胞寿命的“有丝分裂钟”。

  端粒长短的变化被认为是人体走向衰老走近死亡的“钟摆声”。

  迄今为止,端粒长度的差异还从没被精确测量,尤其在人类不同器官中,端粒长短的规律是什么,还摸不着头绪。

  GTEx计划首次进行了系统的测量。更重要的是,研究者找到一种“标尺”——由于血细胞中端粒最短,其端粒长度能够作为其他器官端粒长度的参考。

  系列论文之一的《人类组织中端粒长度的决定性因素》表明,研究者测量了952例捐献者的25种以上组织中的相对端粒长度。使用多因子定量分析技术(也叫Luminex分析法)对639个独特组织样本的端粒长度进行了测量,生成了最大的可共享数据集。

  测量之后,研究团队将数据与GTEx供体特征、遗传变异和组织特异性表达的数据相结合,使用模型分析,希望寻找端粒长短的变化究竟与哪些因素相关。最终发现,组织类型、供体年龄影响最大,而吸烟与否竟然也会对端粒长度有微调。

  在检测的不同组织中,端粒长度在血液中检测的最短,在睾丸组织中测出的最长。在大多数组织中,端粒长度与年龄呈负相关,年龄越大端粒越短。研究还表明,基于祖先的端粒长度差异存在于生殖细胞中,并传递给受精卵。

  作为人类基因组计划的“续篇”,GTEx计划不负众望,揭示了很多重要谜团,积攒了更多数据,也开发了更有效的方法。

  重大生命科学计划的间接影响力是巨大的,例如人类基因组计划大大推动了测序效率,使得全基因组测序速度一快再快,成本一降再降。

  GTEx计划的突破,其实更像为生命之谜这块“硬骨头”切开一个个口子,更大、更深的重要探索将吸引更多目光和研究的聚集,为人类“揭秘自我”积攒更多人气和经验值。

  也难怪有研究者预测,随着GTEx项目继续深入开展,评价基因调控效应在疾病变化和不同环境中的差异将会获得依据,有助于推动精准医学研究计划目标的实现。

  视觉中国供图  人与人的基因序列中99.9%以上是相同的,仅有不到0.1%差异,可是为什么我们却如此不同?  人们经常把人类基因组序列(30亿对碱基)比喻成一部60亿字的天书,人类基因组计划的测序,只是把天书变成“明文”,人类却仍旧看不懂这些文字所表达的意思。  一个名叫“基因型-组织表达”(以下简称GTEx)的大型研究项目试图寻找答案——即找到序列与实际性状(疾病)的关系,确定不同基因究竟如何影响表达。GTEx计划是现有规模最大的人类器官转录组研究计划。这项研究由美国国立卫生研究院(NIH)资助,包括麻省理工学院、哈佛大学、芝加哥大学等美国多个知名研究机构的研究人员参与研究,通过对不同性别的死者不同组织、不同器官的基因组、转录组、蛋白质组进行分析,试图把基因组测序的结果“直译”出来。  经过10年研究,GTEx计划9月上旬公布最新分析成果,数据以系列论文的形式在《科学》《细胞》等杂志上发表。值得一提的是,GTEx数据被广泛用作设计新方法和工具的参考数据集,由此衍生出大量便于更深入研究的统计学方法。  为生活中的“小烦恼”寻找关联基因  这里有每个人的小忧虑,欢迎“对号入座”——  如果你还没到成为中年油腻男的年纪,或许正在担心:为什么我的发际线在不断升高;  如果你是位压力山大的职场女性,或许正在担心:去年体检的乳腺结节不知道怎么样了,据说乳腺癌患病率很高;  如果你是名新手宝妈,或许正在担心:我家娃超重了!除了母乳什么也没吃,为什么胖得连脖子都看不到了;  ……  在GTEx计划公布的研究结果中,这些问题都在基因组、转录组和蛋白质组的分析中找到了答案。  这些答案来自海量数据的测序、汇总、分析……依托了大量的创新分析方法。研究者将所有的研究数据汇总形成GTEx数据集,目前已经更新至第八版,其中包括来自838个供体、52个组织、两个细胞系的17382份样品的数据。  研究者们对这些样品进行全基因组序列的测序分析,转录组表达量的分析,以及相互之间作用关联的分析,以鉴定出哪些基因与哪些性状有密切关联。  这次研究首次发现,一个被命名为C9orf66的基因,与脱发有关,这个基因在男性中的表达量远高于女性;CCDC88C基因在女性中表达水平较高,它是一种与乳腺癌发病有关的基因;而新手宝妈最关心的婴儿体重,可能与婴儿本身无关,却是和宝妈体内的HKDC1基因密切相关,该基因具有孕期血糖调节功能,它的表达影响女性生育的后代体重。  当然还有很多与现实生活密切相关的发现,例如一些基因的高表达会促进癌基因的表达;女性比男性长寿的关联基因等,在最新的研究成果中,人们可以对早有迹象的生命活动在人类基因组的浩瀚长图中“按图索骥”,给出功能“注脚”。  鉴定出与疾病相关的罕见基因突变  关注并研究人类彼此间不同的0.1%基因,其实由来已久。学界通常将其命名为全基因组关联研究(GWAS),顾名思义,是为了寻找基因与功能之间的关联。  0.1%的不同基因序列,意味着在整个基因组30亿个碱基对中至少有30万个常见的SNP(单核苷酸多态性,即单碱基的变化)。“GWAS仅研究了常见的SNP位点,这就意味着仍有许多罕见变异尚未鉴定。”有分析认为,比起常见突变,罕见突变的研究需要更精确的测量,换句话说,只有大规模的全基因组分析(至少全外显子测序)才能满足研究的需要。  在此前发布的第一阶段和第二阶段成果中,GTEx计划也将注意力集中在常见突变对转录组的调控。而这次公布的GTEx计划第三阶段成果终于拓展到了罕见突变。  相较其他数据库,GTEx最大的优势就是来自各种器官的基因表达。但是由于都是从意外死亡的个体获得的样本,除了性别、年龄等基本信息,GTEx并没有个体非常详尽的性状信息。这次通过与之前做过罕见突变研究的英国生物样本库(UK Biobank)合作,鉴定出许多对基因表达有巨大影响的罕见突变,并找到相对应的关联性状(疾病)。这大大提升了GTEx自身研究的意义。  GTEx系列研究论文《通过跨器官的转录组信号,鉴定出有功能的罕见突变》中的研究结果表明,人类基因组包含的罕见突变会增加某些疾病风险,研究通过对838个全基因组数据,及多种器官的转录组数据的分析,检测出了与极端基因表达量有关的罕见突变。研究者整合了来自49个器官的三种极端表达信号,最终首次鉴定出了具有高影响的罕见突变,并且和疾病做了关联。  研究同时给出鉴定罕见突变的方法,可用于对个人基因组的解释和罕见突变的发现,为研究罕见突变的基因功能、提高疾病检测能力提供了有力手段。  试图揭示不同器官中端粒长短规律  端粒是染色体的末端。由于端粒的长度反映细胞复制史及复制潜能,它被称作细胞寿命的“有丝分裂钟”。  端粒长短的变化被认为是人体走向衰老走近死亡的“钟摆声”。  迄今为止,端粒长度的差异还从没被精确测量,尤其在人类不同器官中,端粒长短的规律是什么,还摸不着头绪。  GTEx计划首次进行了系统的测量。更重要的是,研究者找到一种“标尺”——由于血细胞中端粒最短,其端粒长度能够作为其他器官端粒长度的参考。  系列论文之一的《人类组织中端粒长度的决定性因素》表明,研究者测量了952例捐献者的25种以上组织中的相对端粒长度。使用多因子定量分析技术(也叫Luminex分析法)对639个独特组织样本的端粒长度进行了测量,生成了最大的可共享数据集。  测量之后,研究团队将数据与GTEx供体特征、遗传变异和组织特异性表达的数据相结合,使用模型分析,希望寻找端粒长短的变化究竟与哪些因素相关。最终发现,组织类型、供体年龄影响最大,而吸烟与否竟然也会对端粒长度有微调。  在检测的不同组织中,端粒长度在血液中检测的最短,在睾丸组织中测出的最长。在大多数组织中,端粒长度与年龄呈负相关,年龄越大端粒越短。研究还表明,基于祖先的端粒长度差异存在于生殖细胞中,并传递给受精卵。  作为人类基因组计划的“续篇”,GTEx计划不负众望,揭示了很多重要谜团,积攒了更多数据,也开发了更有效的方法。  重大生命科学计划的间接影响力是巨大的,例如人类基因组计划大大推动了测序效率,使得全基因组测序速度一快再快,成本一降再降。  GTEx计划的突破,其实更像为生命之谜这块“硬骨头”切开一个个口子,更大、更深的重要探索将吸引更多目光和研究的聚集,为人类“揭秘自我”积攒更多人气和经验值。  也难怪有研究者预测,随着GTEx项目继续深入开展,评价基因调控效应在疾病变化和不同环境中的差异将会获得依据,有助于推动精准医学研究计划目标的实现。  

更多分享

打印

责任编辑:张芳丹

迄今“最安静”半导体量子比特问世

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

© 1996 - 中国科学院 版权所有京ICP备05002857号-1京公网安备110402500047号网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864电话:86 10 68597114(总机)   86 10 68597289(总值班室)编辑部邮箱:casweb@cashq.ac.cn